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SUMMARY

CIMMYT (International Maize and Wheat Improvement Centre) and other research groups within
the Consultative Group for International Agricultural Research (CGIAR) have made major
contributions to agricultural development, e.g. underpinning the ‘green revolution’, but it is unlikely
they will continue making such far-reaching contributions without the ability to collect, analyse
and assimilate large amounts of spatially orientated agronomic and climatic data. Increasingly,
application of modern tools and technologies are crucial elements in order to support and enhance
the effectiveness of international agricultural research. Bread and durum wheats (Triticum aestivum
and Triticum durum) occupy an estimated 200 million ha globally, are grown from sea level to over
3500 m asl, and from the equator to latitudes above 60x N in Canada, Europe, and Asia. For
organizations like CIMMYT, which seek to improve wheat production in the developing world,
understanding the geographic context of wheat production is crucial for priority setting, promoting
collaboration, and targeting germplasm or management practices to specific environments.
Increasingly important is forecasting how the environments, and their associated biotic and abiotic
stress patterns, shift with changing climate patterns. There is also a growing need to classify
production environments by combining biophysical criteria with socio-economic factors. Geospatial
technologies, especially geographic information systems (GIS), are playing a role in each of these
areas, and spatial analysis provides unique insights. Use of GIS to characterize wheat production
environments is described, drawing from examples at CIMMYT. Since the 1980s, the CIMMYT
wheat programme has classified production regions into mega-environments (MEs) based on
climatic, edaphic, and biotic constraints. Advances in spatially disaggregated datasets and GIS tools
allow MEs to be characterized and mapped in a much more quantitative manner. Parallel advances
are improving characterizations of the actual (v. potential) distribution of major crops, including
wheat. The combination of improved crop distribution data and key biophysical data at high spatial
resolutions also permits exploring scenarios for disease epidemics, as illustrated for the stem rust race
Ug99. Availability of spatial data describing future climate conditions may provide insights into
potential changes in wheat production environments in the coming decades. There is a pressing need
to advance beyond static definitions of environments and incorporate temporal aspects to define
locations or regions in terms of probability or frequency of occurrence of different environment types.
Increased availability of near real-time daily weather data derived from remote sensing should further
improve characterization of environments, as well as permit regional-scale modelling of dynamic
processes such as disease progression or crop water status.
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INTRODUCTION

Geospatial technologies, principally geographic in-
formation systems (GIS) and remote sensing, are
finding applications in an ever-increasing range of
thematic areas, from business strategies (e.g. Thomas
& Ospina 2004) to defence (ESRI 2006) and health
(e.g. Clarke et al. 1996) to conservation planning (e.g.
Steklis et al. 2005). These technologies have emerged
over the last 3 decades through a merger of fields such
as computer science and image processing with
more traditional disciplines such as cartography and
geography. Many definitions exist for GIS, but that
provided by a large commercial GIS software and
data vendor, ESRI (Redlands, CA), is particularly
relevant: ‘GIS is a computer technology that uses a
geographic information system as an analytic frame-
work for managing and integrating data; solving a
problem; or understanding a past, present, or future
situation. GIS is, therefore, about modelling and
mapping the world for better decision making. ’
Aspects of these technologies have become familiar
components of our daily lives through popular ap-
plications such as Google EarthTM and MapQuestTM.
In agriculture, particularly within developed coun-

tries of the Organisation for Economic Co-operation
and Development (OECD), attention has tended to
focus on precision farming applications, with a whole
industry developing around the use of remotely-
sensed imagery, GIS, and Global Positioning Systems
(GPS) to optimize management of spatial variability
at the farm or plot level (e.g. Whelan & McBratney
2000). However, within development arenas, geo-
spatial technologies find applications that extend far
beyond micro-level, precision farming. White et al.
(2002) highlighted potential applications in agri-
culture, natural resources management and rural
development. Examination of activities of major in-
stitutions involved with international agriculture and
development, e.g. FAO, Consultative Group for In-
ternational Agricultural Research (CGIAR), World
Bank, and USAID-FEWS Net, reveals that geo-
spatial technologies are being applied in diverse and
innovative ways to enhance knowledge and improve
decision-making. Examples include the remote sens-
ing products that now form the backbone of famine
early warning systems (see http://www.fews.net/) and
small-area estimation poverty maps that are guiding
policy and development decisions (Elbers et al. 2004).
In addition, global spatial data generation and shar-
ing initiatives are transforming opportunities for
spatial analysis in historically data-sparse regions,
e.g. 90 m SRTM digital elevation data (CGIAR Con-
sortium for Spatial Information, http://srtm.csi.cgiar.
org/, WorldCLIM (Hijmans et al. 2005) and Geo-
Network (FAO 2006)). This widespread use of GIS is
driven by increasing availability of geospatial data,
rapid advances in software and hardware capabilities,

and greater awareness among researchers of how a
geospatial perspective can enhance their research.
International agricultural research centres were

early adopters of geospatial technologies. Pioneering
activities date to the early 1980s at centres such as
CIAT (International Centre for Tropical Agriculture,
based in Colombia), where computer-based analyses
and mapping were used to characterize cropping
systems and germplasm distributions (Carter 1987).
All 15 centres within the CGIAR network now
employ geospatial approaches.
CIMMYT (International Maize and Wheat

Improvement Centre) has a global mandate to
improve and enhance wheat and maize-based farming
systems in developing countries. For wheat and maize
(Zea mays L.), there is a vast range of environments
to be considered. Bread and durum wheat occupy an
estimated 200 million ha globally, being grown from
sea level to over 3500 m asl, and from the equator
to latitudes above 60x N in Canada, Europe, and Asia
and below 40x S in the Southern Hemisphere. This
diversity of production environments presents enor-
mous challenges for institutes like CIMMYT that
participate in wheat research intended to benefit the
entire developing world. A thorough understanding
of wheat environments is important for any crop
research effort, but it is essential in efforts seeking
global impacts. Application of geospatial tools, data
and methods are becoming increasingly important as
a means to assist in understanding and characterizing
such diverse and complex systems and environments
(Hodson et al. 1998; White et al. 2001a).
In the present brief review, wheat-based agricul-

tural systems are used to illustrate how geospatial
technologies are being applied in international agri-
cultural research, drawing predominantly on activi-
ties undertaken by CIMMYT. The examples cover
two broad areas, current wheat distribution (where
wheat is actually grown) and wheat production
environments (the conditions in which wheat grows,
or might be grown), with more emphasis given to the
latter. For wheat production environments, specific
factors such as climate, soil, socio-economic con-
ditions, and biotic stresses are considered. Future
climatic scenarios are considered briefly to examine
how wheat environments might change over the next
30–40 years. Advances and progress are emphasized,
but limitations and areas for improvement also exist
and are also reviewed. All of the examples seek to
improve the understanding of the environments for
which CIMMYT wheat scientists and their colleagues
work, thereby strengthening targeting, priority
setting, and decision-making.

CURRENT WHEAT DISTRIBUTION

Current estimates are that over 200 million ha are
sown to wheat, with 0.9 of this being bread wheat and
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the remaining 0.1 durum wheat (FAOSTAT 2005).
In terms of human consumption, wheat is the most
important crop after rice (Oryza sativa L.). Despite
this importance, few if any public datasets for wheat
distribution exist that are sufficiently quantitative
and spatially disaggregated to allow effective priority
setting and targeting below the national level.
Individual countries, particularly OECD countries,
do have disaggregated, accurate data on wheat pro-
duction, e.g. USA and UK, but for many parts of
the world only national or regional-level data are
available and these are sparse and of varying re-
liability. Lack of such information regarding even the
basic distribution of wheat seriously limits global or
regional wheat planning and research.
Various efforts seek to close this information gap.

The study by Leff et al. (2004) was one of the first
major works to describe global distributions of major
crops at sub-national scales. At CIMMYT, an initial
effort was made to consolidate readily available sub-
national agricultural census data relating to wheat
and combined with expert knowledge to define pro-
duction zones (Trethowan et al. 2005). Subsequently,
FAO, IFPRI (International Food Policy Research
Institute, Washington, DC), and the Centre for
Sustainability and the Global Environment (SAGE,
University of Wisconsin-Madison’s Nelson Institute),
assembled global agricultural census data at the se-
cond-order administrative level as part of the Agro-
MAPS initiative (FAO 2005). The spatial analysis
group at IFPRI is processing the Agro-MAPS data
further and has developed a spatial methodology
(You & Wood 2005) that allocates distributions of
20 major crops, including wheat, at a 5 arc min (ap-
proximately 9 km) grid cell size. The IFPRI method is
based on a cross-entropy approach, which uses ma-
chine learning with stochastic sampling of multiple
sources of information, including satellite imagery,
biophysical crop suitability assessments, and popu-
lation density. This approach is currently being
evaluated at CIMMYT and other CGIAR centres.

WHEAT PRODUCTION
ENVIRONMENTS

In the present review, a holistic view of wheat pro-
duction environments is considered. The production
environment is delimited by factors ranging from
climate and soils to crop management (e.g. irrigation,
tillage practices), social factors (e.g. farmer typology
by gender, wealth or status) and biotic and abiotic
stresses (e.g. pests, diseases or drought). These typi-
cally exhibit strong spatial patterns, hence are amen-
able to use and analysis with geospatial technologies.

Global wheat mega-environments (MEs)

Given the range and diversity of environments in
which wheat is grown, an obvious need is to classify

wheat production areas in order to guide how
priorities are established for allocating resources to
plant breeding, agronomic research and technology
promotion. At CIMMYT, the concept of MEs was
first used to prioritize wheat improvement, starting
in the late 1980s (Rajaram et al. 1994). The MEs
represent global regions – not always geographically
contiguous – with similar adaptation patterns,
defined by crop production factors, consumer pre-
ferences, and wheat growth habits. Their current
purpose is seen as assisting international priority
setting, collaboration, and targeting of germplasm or
agronomic practices to specific environments.
The criteria used to delimit the MEs have evolved

over time. The initial criteria involved broad, generic
definitions of key components such as moisture
regimes and temperature ranges, e.g. ‘high rainfall ’
v. ‘ low rainfall ’ or ‘moderate cold’ v. ‘ severe cold’
(see Braun et al. 1996). More recently, availability of
global datasets for agroclimatic parameters, e.g.
WorldCLIM (Hijmans et al. 2005) and global irri-
gated area (Siebert et al. 2005), and advances in GIS
tools that permit the efficient use and analysis of these
datasets, have created opportunities to define and
map wheat MEs based on more quantitative climate,
soil, and management data. White et al. (2001b)
initiated the process of applying GIS tools and
datasets in order to revise and update the ME defi-
nitions being used by CIMMYT’s wheat programme.
The foundation for this work was the unique, exten-
sive network of international wheat testing sites
run by national agricultural research partners in
collaboration with CIMMYT. Sites in the network
(approximately 800) were geo-referenced and classi-
fied according to predominant ME by knowledgeable
wheat scientists (Fig. 1). Subsequently, underlying
climatic and edaphic factors were extracted and
used to determine quantitative criteria for mapping
the MEs. The contrasting criteria arising from the
traditional and geospatial approaches for classifying
spring wheat MEs are given in Table 1.
Long-term mean minimum temperature in the

coolest quarter (three consecutive coolest months
of the year) proved effective in distinguishing
among the winter-grown spring, winter/facultative,
and summer-grown spring wheats (Fig. 2). This
temperature criterion was also useful for separating
ME1 (favourable, irrigated) from ME5, where heat
tolerance is required, with the upper limit of
ME1 occurring at 11 xC. Using the criteria described
above, it has been possible to delineate spatial dis-
tributions of the MEs and map them within a GIS.
Selected ME zones for eastern Africa, the Middle
East, and South Asia are shown in Fig. 3, where it is
seen, for example, that the favourable, irrigated, ME1
environment occurs predominantly in Pakistan and
India, but also is represented in the Middle East
and Egypt.
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Separating facultative wheat environments from
true winter wheat environments remains problematic.
This is not entirely surprising. Wheats with facultat-
ive habits, by definition, occur in transition zones
between spring and winter wheat regions, and the
genetic basis of the class is uncertain (see Crofts
1989). Work is underway to apply cluster analysis
on site-specific agroclimatic data to identify criteria
that better distinguish among spring, facultative and
winter wheat environments.
It is important to note that many of the insights

arising from the work on characterizing MEs, and

likewise for other subsequent examples in the present
review, were only possible due to the unique nature
of spatial analysis methods. For example, essential
inputs, e.g. climate surfaces, were only available as
a result of the application of spatial interpolation
techniques; environment classification was facilitated
using analytic approaches such as location-based
selection and spatial overlay that are readily applied
in a GIS.
While these new approaches have improved our

understanding of major wheat regions, the criteria
assume static environmental conditions and thus

Table 1. CIMMYT spring wheat mega-environment (ME) definitions, using qualitative and geospatial criteria

ME Original criteria Geospatial criteria

ME1 Favourable, irrigated, low rainfall Coolest quarter (three consecutive coolest months) mean min
temp o3 xC <11 xC, plus >5% of 5 arc min grid cell equipped
for irrigation

ME2a High rainfall. Highland summer rain Wettest quarter (three consecutive wettest months) mean min temp
o3 xC <16 xC, wettest quarter precipitation o250 mm, elevation
o1400 m

ME2b High rainfall. Lowland winter rain Coolest quarter mean min temp o3 xC <16 xC, coolest quarter
precipitation o150 mm, elevation <1400 m

ME3 High rainfall, acid soil Climate criteria as for ME2 (a & b merged), topsoil pH<5.2
ME4 Low rainfall Coolest quarter mean min temp o3 xC <11 xC, wettest quarter

precipitation o100 mm <400 mm
ME4c Low rainfall, stored moisture Coolest quarter mean min temp o3 xC <16 xC, wettest quarter

precipitation o100 mm <400 mm
ME5 Warm, irrigated Coolest quarter mean min temp >11 xC <16 xC, plus >5% of

5 arc min grid cell equipped for irrigation
ME6 High latitude (>45x N or S) Coolest quarter mean min temp less than x13 xC, warmest quarter

mean min temp o9 xC

Spring Facultative Winter
ME 1

ME 6
ME 5
ME 4
ME 3
ME 2

ME 7

ME 9
ME 8

ME 10

ME 12
ME 11

Fig. 1. Distribution of locations of wheat trials conducted by national agricultural research services and CIMMYT,
classified by ME.
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ignore temporal variation due to year-to-year vari-
ation in climatic conditions. Trethowan et al. (2005)
showed how specific locations may fluctuate between
ME2 (high rainfall) and ME4 (low rainfall) depend-
ing on seasonal conditions. The issue of temporal
variation and frequencies of occurrence is explored
later.

Wheat MEs and climate change

Global climate change poses both threats and
opportunities for agriculture. The third assessment
report of the Inter-governmental Panel on Climate
Change (IPCC 2001) concluded that ‘The Earth’s
climate system has demonstrably changed on both
global and regional scales since the pre-industrial era,
with some of these changes attributable to human
activities, ’ and also that ‘Models of cereal crops
indicate that in some temperate areas potential yields
increase with small increases in temperature but
decrease with larger temperature changes (medium to
low confidence). In most tropical and subtropical
regions, potential yields are projected to decrease for
most projected increases in temperature (medium
confidence). ’ Given the increasing body of supporting
evidence, it is likely that global change will affect most
wheat producing regions.
The more quantitative definitions ascribed to

global wheat MEs (described in the previous section),
coupled with spatially disaggregated scenarios for

future climates, offer opportunities to explore how
future trends might affect global wheat environments.
Ortiz et al. (in preparation) used one such scenario to
redelineate wheat MEs. The climate change scenario
used was described by Govindasamy et al. (2003) and
assumed a doubling of CO2 using the CCM3 climate
model, CCM3 outputs were subsequently downscaled
to a 30 arc-second resolution and published as part of
the WorldCLIM dataset (Hijmans et al. 2005). Under
projected trends in greenhouse gas production, this
scenario roughly approximates conditions for year
2050. These revised climate-based wheat ME defi-
nitions revealed potential for important shifts in wheat
environments. For example, in the Indo-Gangetic
Plains of South Asia, large regions of favourable,
high potential ME1 were predicted to become
heat-stressed, lower potential ME5 (Ortiz et al. in
preparation). This area is one of the world’s bread-
baskets, accounting for around 0.14–0.15 of global
wheat production and supporting over 0.5 billion
people – many of whom are highly dependent on
wheat (Fig. 4). Assuming current population levels,
this change would result in an additional 200 million
people residing in areas where wheat production
would be affected by heat stress.
A first step has been taken in relating climate

change to wheat environments and additional fac-
tors should be considered in future work. Potential
improvements for future work might include the
incorporation of additional climate scenarios,
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Fig. 2. Use of temperature criteria to further define wheat MEs.
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assumptions on likely changes in irrigation patterns
and adaptive changes in cultivars or crop manage-
ment practices. However, the study highlighted
trends that merit more in-depth research to assist
wheat programmes with planning for climate
change.

Biotic stress and wheat production environments

Pest and disease and disease management is another
topic for which spatial information can enhance
planning and research. The potential spread of a
new Sr31-virulent wheat stem rust (Puccinia graminis
Pers.) race Ug99 is illustrative. This race arose in East
Africa (Pretorius et al. 2000) and presents a major
threat to wheat producing regions from Africa to
China (CIMMYT 2005). For more than 30 years,
sources of stem rust resistance, such as the Sr31 and
Sr38 loci, provided effective protection against stem
rust, forming the resistance-base for a large pro-
portion of the world’s wheat cultivars. Unfortunately,
Ug99 is not controlled by these sources (Wanyera
et al. 2006). This threat thus poses an urgent need to
assess the potential risk to wheat regions of Africa,

the Middle East, and Asia. Wheat rusts (Puccinia
spp.) are obligate pathogens that rely on the pro-
duction of huge numbers of urediniospores and sub-
sequent wind dispersion for transmission onto new
susceptible hosts. Given the inherently spatial nature
of Ug99 migration, GIS tools are starting to be
used as a framework to integrate relevant factors
determining likely movement (Hodson et al. 2005).
First, current status and distribution of Ug99 in East
Africa were incorporated into a spatial database and
mapped. A predicted migration route and subsequent
potential risk zone were then delimited using histori-
cal evidence of previous rust epidemics originating
in East Africa, prevailing winds, optimal climatic
conditions, and wheat distributions. This process
identified a potential risk zone for infection by Ug99,
assuming natural wind-borne dispersal, that covered
the major wheat growing areas of East Africa and the
Nile Valley, the Middle East as far north as southern
Turkey and eastward across the entire Indo-Gangetic
Plains. Within this zone, existing data on varietal
susceptibility revealed that the vast majority of culti-
vars are either completely susceptible to Ug99 or their
susceptibility level is unknown due to lack of testing

ME1 sites

ME1 zone

ME2 sites

ME2 zone

ME5 sites

ME5 zone

Fig. 3. Example wheat ME zonation map for selected spring wheat environments in eastern Africa, the Middle East
and South Asia.

120 D. P. HODSON AND J. W. WHITE



(Fig. 5). Of the reported 44 million ha planted to
known cultivars, less than 0.01 of this area proved
to have been planted with cultivars showing even
moderate resistance to Ug99. Availability of spatially
disaggregated wheat production data, in combination
with germplasm susceptibility data and demographic
data, permitted scenarios for potential loss to be
developed that included production losses, economic
losses, and farming population impacts. If an Ug99
epidemic occurs, the consequences for global food
security may be catastrophic.
The study of Hodson et al. (2005) is perhaps the

first to assess likely Ug99 movements using quanti-
tative data, and supports the hypothesis of Singh et al.
(2004) that east Africa and the wheat area of Asia

may comprise a single epidemiologic zone. However,
given the rising concern over the emergence and
spread of Ug99 there is a clear need for more detailed
spatial modelling of the new race. Predicted patterns
of movement of air-borne pathogens are filled with
uncertainty, although advances in air-borne spatial
modelling and prediction offer interesting insights
(APHIS 2004) on likely paths of spread, probability
of infection and decision support for control
measures. Such information can guide establishment
of systems for accurate monitoring and early warning
as well as decisions on how to minimize the spread of
the disease and alleviate its impact.
Traditional, field-based pest/disease surveys are

another area in which geospatial technologies are
playing an increasingly important role. GPS tech-
nology has revolutionized location-based data col-
lection in the field, making data collection rapid,
accurate and simple. Subsequent analysis within a
GIS framework can add considerable value and pro-
vide new insights. Cereal nematode and soil pathogen
surveys in wheat areas of Turkey provide one ex-
ample of the growing role of geospatial technologies
in pest/disease surveys (A. F. Yýldýrým, personal
communication). In these surveys, all collection sites
were geo-referenced using GPS in the field, and
geospatial statistics applied. This approach permitted
the identification of areas with significant clusters of
high or low incidence of particular nematode species,
plus subsequent combination and correlation with
important secondary spatial data (soil properties data
in this instance). Use of geospatial technologies in
this manner enriches and adds value to traditional
surveys.

(a) Current

Current
ME 1 sites
ME 5 sites
Current ME 1
Current ME 5

(b) Future

Future (2050)
Future (2050) ME 1
Future (2050) ME 5

Fig. 4. Principal wheat ME zones (ME1 – high potential,
favourable, irrigated; ME5 – heat-stressed, lower potential)
in South Asia under (a) current climatic conditions, and (b)
future climatic scenarios (a doubling of CO2 levels, roughly
equating to year 2050).

Ug99 confirmed sites

9 Million Ha

5·4 M na

‘Risk’ area

Wheat zone

Variety susceptibility
Susceptible

Moderate susceptibility

Moderate resistance

Predominant winds

0

N

S

W E

337·5 675 1,350
Kilometres

Unknown

Fig. 5. Initial, potential risk zone for stem rust race Ug99
under natural migration conditions. Wheat variety suscep-
tibility, based on reported areas planted, is indicated.
Symbols are sized proportional to reported area planted.
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Socio-economic factors and wheat production
environments

Efficient decision-making in agricultural development
usually requires considering many factors beyond the
basic agroclimatic and edaphic conditions. Often,
socio-economic data, especially indicators of welfare
or poverty, are also major concerns. Data availability
and quality in this thematic area can be problematic,
although substantial progress is being made in both
methodologies and coverage for mapping socio-
economic status (e.g. CIESIN 2006).
Poverty mapping, the spatial representation and

analysis of indicators of human well-being and pov-
erty, has become an increasingly important instru-
ment for policymakers, planners, researchers, and
other development workers (e.g. Henninger & Snel
2000). Poverty is a spatially heterogeneous phenom-
enon and effective targeting of interventions to
reduce poverty requires understanding what factors
drive local or regional incidence of poverty. Poverty
mapping has benefited from three technical advances:
increased availability of relevant data, development
of GIS, and improved econometric techniques such
as small area estimation (Bigman & Fofack 2000).
These advances have led to a rapid expansion in the
availability of disaggregated poverty maps, currently
covering more than 25 developing countries (CIESIN
2006). Geographic targeting to the level of small
administrative areas improves cost effectiveness of
development spending and is more efficient at reach-
ing the poor or bypassed areas (e.g. Elbers et al.
2004). Agricultural research unquestionably has
alleviated poverty (Evenson & Gollin 2003), but
many regions with large numbers of rural poor have
been largely bypassed. Bellon et al. (2005) proposed
that incorporation of poverty mapping techniques, in
parallel with more traditional biophysical environ-
mental characterizations, should improve the likeli-
hood that agricultural research will benefit rural
poor. Accordingly, the study of Bellon et al. (2005)
combined CIMMYT maize MEs (Setimela et al.
2005) with high-resolution rural poverty maps in
Mexico, resulting in improved information on target
zones for specific technology interventions (Fig. 6).
The derived framework has been subsequently
applied as a tool to assist in the targeting of specific
small-scale maize improvement technologies such
as ‘targeted allele introgression’ described by
Bergvinson & Garcı́a-Lara (2004). At present, similar
work has not been undertaken for wheat, but the
approach appears applicable for many wheat regions.

FUTURE DIRECTIONS

Although spatial characterization of wheat environ-
ments has proven utility, much greater impact is
expected as we advance beyond static definitions of

environments and incorporate temporal variation.
The best example of this promise is from character-
ization of target population environments (TPE), by
coupling crop simulation models with long-term
weather records to determine seasonal sequences
of stress over many years. The stress patterns are
subsequently analysed to determine frequencies of
specific environment types (Chapman et al. 2000a ;
Loffler et al. 2005). The resulting information is then
used to weight data from series of multi-environment
trials according to how representative they are of the
TPE, and so improve selection efficiency (Chapman
et al. 2000b).
The greatest current constraint to coupling simu-

lation models with spatial analysis is limited geo-
graphic coverage of daily weather records. Recent
advances in remotely sensed climatic data products
offer potential gains for advancing GrE interaction
studies. Daily (and decadal) rainfall estimates, based
on remotely sensed cold cloud temperature data, are
now available for Africa via the USGS FEWS Net
activities. In addition, NASA now provides global
3-h rainfall estimates through the Tropical Rainfall
Monitoring Mission (TRMM) programme at a
spatial resolution of 0.25x. A wider range of daily
climatic variables are also being provided at a coarser
spatial resolution (1x grid) through the Climatology
Resource for Agroclimatology programme (Chandler
et al. 2004). These data are available in a format
suitable for crop models, and efforts are underway
to evaluate whether the coarse spatial scale limits
their utility as inputs to crop simulation models. It
should be noted that private sector efforts to charac-
terize dynamic US maize environments already use

‘Highland’ cluster groups

Highland mega-environment

Cluster group 4 (non-poor)

Cluster group 12 (food poor)

Fig. 6. Example of two contrasting cluster groups of rural
communities (G4 and G12) in terms of poverty, occurring
within a relatively homogeneous environment in Central
Mexico, shown in relation to the independently derived
CIMMYT highland maize ME (from Bellon et al. 2005).
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remotely sensed rainfall data to classify multi-
environment trials (Loffler et al. 2005).
The climatic datasets described above may also

have utility as inputs into predictive crop disease
models. The predictive model for Fusarium head
blight developed by Pennsylvania State University
and partners (available at http://www.wheatscab.
psu.edu/) illustrates this potential. The model, devel-
oped for the USA, is driven through easy access to
extensive sources of near-real-time meteorological
station data. The increasing availability of remotely
sensed climatic data opens up the possibility of
developing similar models for data-sparse regions in
developing countries.

CONCLUSIONS

Spatial technologies, such as GIS, GPS and remote
sensing, are finding application in an ever expanding
range of thematic areas, and this trend is likely to
continue in future. Wheat research at CIMMYT
provides just one set of examples of these advances.
Improvements in quality and availability of spatial
data combined with rapidly improving analytical
tool advances are increasing our capability to use
spatial technologies to improve decision-making,
planning, and targeting. Numerous aspects of
wheat research have benefited from the use of these
technologies – an improved understanding of wheat
production areas and environments at global and
local scales, insights into potential shifts in pro-
duction environments with changing climate, and
exploration of the potential spread of disease
epidemics. It is important to note that most of the
insights gained in these diverse studies were only
possible as a result of the unique nature of spatial
analysis methods, e.g. spatial interpolation, spatial
overlay, location-based selection, and space–time
visual analysis. In the absence of spatial analysis, it is
unlikely that similar insights or advances could have
been achieved.
Perhaps the greatest opportunities are found in

advancing beyond static definitions of environments
and incorporating temporal variability to estimate the
probability or frequency of occurrence of different
environment types. Increased availability of nearly
real-time daily weather data derived from remote
sensing may further improve characterization of
environments and permit regional-scale modelling
of dynamic processes, such as disease progression or
crop water balance.
Similarly, advances in the precision and spatial

resolution of future climate and global circulation
models are likely to result in improved abilities to
predict and model likely changes in crop production
environments. Improvements in this area are likely
to have major impacts in influencing planning and
policy decisions of global crop breeding programmes

in terms of target areas, traits and management
practices within a changing world.
Despite many advances, use of geospatial technol-

ogies is less widespread than it could be within the
international agricultural research community and
partner organizations. Limits to wider adoption are
multi-faceted and often vary depending on specific
circumstances, so are not easy to characterize. Im-
portant limiting factors often include: data avail-
ability at an appropriate geographic scale ; awareness
amongst researchers ; reluctance to explore non-
traditional technologies ; training; access to software
tools ; and in some developing countries access to
computers.
Another area of concern is that the outputs of geo-

spatial analyses often are visually impressive products
whose accuracy, nonetheless, is difficult to assess. Few
maps include indicators of accuracy or expected re-
liability. This problem reflects the fact that geospatial
techniques are essentially used to create complex
models. Thus, hypothesis testing in geospatial analysis
is analogous to the problems of identifying testable
hypotheses in outputs of simulation models.
A map of wheat MEs (e.g. Fig. 3), can be viewed as

the hypothesis that because different wheat genotypes
respond differently to day length, temperature and
water management, genotyperenvironment interac-
tions for grain yield are reduced if environments are
grouped using the described criteria. While this hy-
pothesis could be tested by examining the portion of
variance attributable to MEs in an analysis of vari-
ance for a multilocation trial, problems arise in ident-
ifying a suitable set of test data. Even at a centre such
as CIMMYT, yield trials usually are targeted to sub-
sets of theMEs and include genotypes pre-selected for
expected low GrE within those environments. These
difficulties do not excuse GIS from conventional
scientific scrutiny but indicate the problems inherent
in its use.
An additional challenge, especially in times of re-

source scarcity, is institutional priority setting. For
the projections on the spread of the rust race Ug99,
the predicted epidemic may, regrettably, prove self-
evident. However, a much better understanding of
the utility of the modelling effort requires a major
monitoring effort over coming years. Proposals have
been forwarded for this work but understandably this
work is viewed as secondary in relation to identifying
and distributing resistant germplasm. These examples
are indicative of some of the major challenges for
scientists who wish to apply geospatial techniques.
Diverse examples of applications of geospatial

technologies within international agricultural re-
search have been highlighted in this review. Given the
increasing awareness and application amongst re-
searchers, spatial technologies will undoubtedly see
increasing use throughout the agricultural research
and development process.
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